miércoles, 30 de abril de 2014

ANTIDERIVADAS Y SUS APLICACIONES

ANTIDERIVADAS

La antiderivada es la función que resulta del proceso inverso de la derivación, es decir, consiste en encontrar una función que, al ser derivada produce la función dada.
Por ejemplo:
Si f(x) = 3×2, entonces, F(x) = x3, es una antiderivada de f(x). Observe que no existe una derivada única para cada función. Por ejemplo, si G(x) = x3+ 5, entonces es otra antiderivada de f(x).
La antiderivada también se conoce como la primitiva o la integral indefinida se expresa de la siguiente manera: en donde: f(x) es el integrando; dx, la variable de integración o diferencial de x y C es la constante de integración.
Notación
La notación que emplearemos para referirnos a una antiderivada es la siguiente:
Monografias.com
Teorema
Si dos funciones h y g son antiderivadas de una misma función f en un conjunto D de números reales, entonces esas dos funciones h y g solo difieren en una constante.

Monografias.comMonografias.com
Monografias.com
Conclusión: Si g(x) es una antiderivada de f en un conjunto D de números reales, entonces cualquier antiderivada de f es en ese conjunto D se puede escribir comoMonografias.comc constante real.
Fórmula que relaciona la integral definida y la indefinida
Monografias.com
A la hora de resolver una antiderivada o integral indefinida se deben tener disponibles los recursos aritméticos y heurísticos. Estos son:
  • Concepto.
  • Propiedades.
  • Reglas de integración.
  • Integrales inmediatas.
  • Métodos clásicos de integración:
-Integración por sustitución.
-Integración por partes.
-Integración de fracciones racionales mediante fracciones simples.

No hay comentarios:

Publicar un comentario